Lecture 5

Polling (advanced)

What can we infer from an observation?

Review discrete r.v.
Bernoulli process

Coin toss 1, coin toss 2, coin toss 3, coin toss 4 ...

\[Z_1 \quad Z_2 \quad Z_3 \quad Z_4 \]

\[Z_i = \begin{cases} 0, & \text{with probability } 1 - p \\ 1, & \text{with probability } p \end{cases} \]

\[P(Z_1 = 1, Z_2 = 0, Z_3 = 1, Z_4 = 1) = ? \]

\[p(1-p)p = p^3(1-p) \]

i.i.d. : independent and identically distributed

Problem solving 1

- Roll a fair die 10 times. Let \(X \) be the number of times the die shows one or two. What’s the mean of \(X \)?

- What is the Bernoulli process here?

<table>
<thead>
<tr>
<th>Number that shows on the die</th>
<th>{1, 2}</th>
<th>{3, 4, 5, 6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z_i)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[Z_i = \begin{cases} 0, & \text{w.p } 2/3 \\ 1, & \text{w.p } 1/3 \end{cases} \]

What is \(X \) in terms of \(Z_i \)?
Problem solving 1

- Roll a fair die 10 times. Let X be the number of times the die shows one or two. What’s the mean of X?

$$Z_i = \begin{cases} 0, & w.p \ 2/3 \\ 1, & w.p \ 1/3 \end{cases}$$

Keyword: number of times

$$X = \sum_{i=1}^{10} Z_i$$

What’s the distribution of X?

\[X \sim \text{Binomial} \ (10, \ 1/3) \]
Problem solving 2

- Roll a fair die. Let Y be the number of trials needed until the die shows one or two. What’s the mean of Y?

- What is the Bernoulli process here?

<table>
<thead>
<tr>
<th>Number that shows on the die</th>
<th>{1, 2}</th>
<th>{3, 4, 5, 6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_i</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$$Z_i = \begin{cases}
0, & \text{w.p. } 2/3 \\
1, & \text{w.p. } 1/3
\end{cases}$$

What’s the distribution of Y?

- Roll a fair die 10 times. Let Y be the number of trials needed until the die shows one or two. What’s the mean of Y?

$$Z_i = \begin{cases}
0, & \text{w.p. } 2/3 \\
1, & \text{w.p. } 1/3
\end{cases}$$

Keyword: number of trials until

$Y \sim \text{Geometric (1/3)}$
Problem solving 3

- Roll a fair die. Let S be the number of trials needed until the die shows one or two for the second time. What’s the mean of S?

$$Z_i = \begin{cases} 0, & \text{w.p. } 2/3 \\ 1, & \text{w.p. } 1/3 \end{cases}$$

Keyword: number of trials until second time

If L_1 is the number of trial till the first 1, L_2 is the number of trials till the second 1, then $S = L_1 + L_2$.

Here L_1 and L_2 are i.i.d. Both \sim Geometric $(1/3)$
Problem solving 4

- Coupon collector

Suppose a fair die is repeatedly rolled until each of the numbers one through six shows at least once. What is the mean number of rolls?

Keyword: number of trials until

By same argument,
if \(L_1 \) is the number of trials till the first 1, \(L_2 \) is the number of trials till the second 1, ... then \(S = L_1 + L_2 + L_3 + L_4 + L_5 + L_6 \)

However, the underlying Bernoulli process changes!!
Problem solving 4

- L₁ number of trials until any number shows up.

<table>
<thead>
<tr>
<th>Number that shows on the die</th>
<th>{1, 2, 3, 4, 5, 6}</th>
<th>φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[Z_i = \begin{cases}
0, & \text{w. p. 0} \\
1, & \text{w. p. 1}
\end{cases} \]

- In particular, Z₁ can only be 1.
- So L₁ = 1

Problem solving 4

- Bernoulli process so far

- L₂ starts counting
- Suppose the number that showed up is 6

<table>
<thead>
<tr>
<th>Number that shows on the die</th>
<th>{1, 2, 3, 4, 5}</th>
<th>{6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zᵢ (i > L₁)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[Z_i = \begin{cases}
0, & \text{w. p. 1/6} \\
1, & \text{w. p. 5/6}
\end{cases} \]

What’s the mean of L₂?
Problem solving 4

- Bernoulli process so far
 1 0 0 1
- \(L_3 \) starts counting
- Suppose the two numbers that showed up is 6 and 5

<table>
<thead>
<tr>
<th>Number that shows on the die</th>
<th>{1, 2, 3, 4}</th>
<th>{5, 6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z_i(i > L_2))</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
Z_i = \begin{cases}
0, & \text{w. p. } 2/6 \\
1, & \text{w. p. } 4/6
\end{cases}
\]

What’s the mean of \(L_3 \)?

Problem solving 4

\[
S = L_1 + L_2 + L_3 + L_4 + L_5 + L_6
\]

- \(L_1 \sim \text{Geometric (1)} \)
- \(L_2 \sim \text{Geometric (5/6)} \)
- \(L_3 \sim \text{Geometric (4/6)} \)
- \(L_4 \sim \text{Geometric (3/6)} \)
- \(L_5 \sim \text{Geometric (2/6)} \)
- \(L_6 \sim \text{Geometric (1/6)} \)

\[
E(S) = E(L_1) + E(L_2) + E(L_3) + E(L_4) + E(L_5) + E(L_6)
\]

\[
= 1 + 6/5 + 6/4 + 6/3 + 6/2 + 6
\]

\[
= 6 \left(1/6 + 1/5 + \frac{3}{6} + 1/3 + \frac{3}{6} + 1 \right)
\]

Yi Lu, ECE 313
What can we infer from an observation?

180 m votes for C
120 m votes for D
Polling

- Pick one person: (random experiment)
 - With 0.4 probability, vote for D
 - With 0.6 probability, vote for C
 - Bernoulli (p)

- Question now:
 If we don’t know p, what can we say about its value based on the result of our random experiment?
 (In this case, outcome of a Bernoulli process)
Inference

This week
What can we say about p?
Values of random variables observed

3 different ways of making sense of the observation

1. Maximum likelihood (ML) parameter estimation
2. Bayes formula
3. Confidence interval

1. ML parameter estimation

Given a bent coin that shows heads with probability p. I flip the coin 1000 times and get 300 flips. How do I estimate p?

p = 0.3, the empirical mean

0.3 is the ML estimate in the following sense:

\[P_x(300) = \binom{1000}{300} p^{300} (1 - p)^{700} \]
1. **ML parameter estimation**

0.3 is the ML estimate in the following sense

\[p_{ML} = \operatorname{argmax}_p \binom{n}{k} p^k (1 - p)^{n-k} \]

Differentiate with respect to \(p \)

1. Identify the variable that parametrizes the distribution (in this case, \(p \))

2. Maximize the distribution with respect to the parameter
2. Bayes formula

We have *prior knowledge* of the distribution of p

$p = 0.3$, the empirical mean

However, we *know* that $p = 0.1$ with probability 0.9 and $p = 0.3$ with probability 0.1
2. Bayes formula

\[P(p = 0.1) = 0.9, \quad P(p = 0.3) = 0.1 \]

Suppose
\[P(k = 300 \mid p = 0.1) = 0.1 \]
\[P(k = 300 \mid p = 0.3) = 0.5 \]

What is \(P(p = 0.1 \mid k = 300) \)?

How about \(P(p = 0.3 \mid k = 300) \)?

Bayes formula is nothing but conditional probability

\[P(p = 0.1 \mid k = 300) = \frac{P(p = 0.1, k = 300)}{P(k = 300)} \]

\[P(p = 0.1) = 0.9 \quad P(p = 0.3) = 0.1 \]
2. Bayes formula

\[
P(p = 0.1 | k = 300) = \frac{P(p = 0.1, k = 300)}{P(k = 300)}
\]

\[
= \frac{P(p = 0.1, k = 300)}{P(p = 0.1, k = 300) + P(p = 0.3, k = 300)}
\]

\[
P(p = 0.1) = 0.9, \quad P(p = 0.3) = 0.1
\]

Suppose \(P(k = 300 | p = 0.1) = 0.1 \)

\(P(k = 300 | p = 0.3) = 0.5 \)
2. Bayes formula

\[
P (p = 0.1 \mid k = 300) = \frac{P (p = 0.1, k = 300)}{P (k = 300)} = \frac{P (p = 0.1, k = 300)}{P (p = 0.1, k = 300) + P (p = 0.3, k = 300)}
= \frac{0.9 \times 0.1}{0.9 \times 0.1 + 0.1 \times 0.5} = \frac{9}{14}
\]

Suppose \(P (k = 300 \mid p = 0.1) = 0.1 \)
\(P (k = 300 \mid p = 0.3) = 0.5 \)

\[
P (p = 0.1) = 0.9, \quad P (p = 0.3) = 0.1
\]

Similarly, we get
\[
P (p = 0.3 \mid k = 300) = \frac{5}{14}
\]
3. Confidence interval

ML parameter maximization or Bayes formula
Yields a point estimate: \(p = 0.1? \ p = 0.3? \)

Confidence interval gives an interval estimate, so that
\[P \left(p \in \text{this interval} \right) \geq \text{some given number} \]

Each set of samples gives a different random interval

There is a distribution on the random interval. The probability that a random interval contains \(p \) is made to be at least, say, 96%